Enclosed Control Catalog Number Logic
 Revision
 09/10/2021

1. Meter Sockets

$0=$ No sockets
$1=1$ ring type socket with test bypass facility $2=2$ ring type socket with test bypass facility $3=1$ ring socket with, 1 without test bypass facilities $4=1$ ring type socket without test bypass facility $5=1$ ringless socket with lever test bypass facility $6=2$ ringless socket with lever test bypass facility $7=1$ ringless socket without test bypass facility $8=1$ bolt on meter with manual bypass facility $9=1$ ringless socket KK horn bypass $A=2$ ringless sockets KK hom bypass $B=1$ ring type socket with test switch, C.T. Rated Meter Socket $\mathrm{C}=1$ ringless socket with test switch, C.T. Rated Meter Socket $D=1$ ring type socket with test bypass, U3504 Meter Socket $\mathrm{E}=2$ ring type sockets w/out test bypass $\mathrm{F}=2$ ringless sockets w/out test bypass

| 2. Amperage | | |
| :--- | :--- | :--- | :--- |
| $0=$ Norating $3=125 \mathrm{amps}$ $8=800 \mathrm{amps}$ $\mathrm{C}=1600 \mathrm{amps}$
 $1=100 \mathrm{amps}$ $4=400 \mathrm{amps}$ $A=1000 \mathrm{amps}$ $D=2000 \mathrm{amps}$
 $2=200 \mathrm{amps}$ $6=600 \mathrm{amps}$ $B=1200 \mathrm{amps}$ $E=2400 \mathrm{amps}$ | | |

3. System Voltage

$0=120 \mathrm{~V}, 1 \varnothing, 2 \mathrm{~W}$ (4 Jaw)

$1=120 / 240 \mathrm{~V}, 1 \varnothing, 3 \mathrm{~W}(4 \mathrm{Jaw})$
$2=208 \mathrm{Y} / 120 \mathrm{~V}, 1 \varnothing$, 3W (4 Jaw+105J) $3=240 / 480 \mathrm{~V}, 1 \varnothing, 3 \mathrm{~W}$ (4 Jaw) $4=480 \mathrm{Y} / 277 \mathrm{~V}, 1 \varnothing, 3 \mathrm{~W}(4 \mathrm{Jaw}+105 \mathrm{~J})$ $5=208 \mathrm{Y} / 120 \mathrm{~V}, 3 \emptyset, 4 \mathrm{~W}$ (7 Jaw) $6=240 \Delta / 120 \mathrm{~V}, 3 \varnothing, 4 \mathrm{~W}$ (7 Jaw) $7=240 \Delta \mathrm{~V}, 3 \varnothing, 3 \mathrm{~W}$ (5 Jaw) $8=480 \mathrm{Y} / 277 \mathrm{~V}, 3 \emptyset, 4 \mathrm{~W}$ (7 Jaw) $9=480 \Delta \mathrm{~V}, 3 \varnothing, 3 \mathrm{~W}$ (5 Jaw) $A=$ No rating $\mathrm{B}=480 \Delta / 240 \mathrm{~V}, 3 \emptyset, 4 \mathrm{~W}$ (7 Jaw) $\mathrm{C}=120 / 240 \mathrm{~V}, 1 \varnothing, 3 \mathrm{~W}$ (5 Jaw) D $=240 / 480 \mathrm{~V}, 1 \varnothing, 3 \mathrm{~W}$ (5 Jaw) $\mathrm{E}=480 \mathrm{~V}, 1 \varnothing, 2 \mathrm{~W}$ (4Jaw)

4. Service/Main Disconnect

$0=$ No Main (Max6 disconnect per unit)

1 = (1) Circuit Breaker Main 2 (2) Circuit Breaker Mains 3 = (1) T-Fuse Pullout Main 4 =(3) Circuit Breaker Mains 6 = (1) 4-Pole Main (100A Max.)

5. Distribution Interior

(Loadcenters use plug-in C/B's; Panelboards use bolt-on C/B's)
$A=(2) 8$ circuit loadcenters metered, (1) 8 circuit loadcenter unmetered
$B=(2) 24$ circuit loadcenters
$D=(1) 42$ circuit panelloard (enclosure types H \& K only)
$\mathrm{E}=$ (1) 30 circuit panelboard (400A K or Q)
$F=(1) 18$ circuit panelboar
$\mathrm{G}=(1) 30$ circuit loadcenter (400A K or Q)
$\mathrm{H}=(2) 12$ circuit loadcenters
$\mathrm{J}=$ No interiors and no branch breakers (Main only)
$K=(1) 4$ circuit loadcenter metered, (1) 4 circuit loadcenter unmetered L = Distrbution block(s) Only
$\mathrm{M}=$ (2) Distribution blocks
$\mathrm{N}=$ Metered and unmetered lug-lug breakers
$\mathrm{P}=$ Metered lug to lug breakers
$R=(1) 8$ circuit metered, (1) 8 circuit unmetered, (1) 12 circuit metered
$T=$ (1) 8 circuit loadcenter
$\mathrm{U}=$ Unmetered lug to lug breakers (Type A)
$V=(1) 6$ circuit plug-on breaker interior
$W=(2) 6$ circuit plug-on breaker interio $\mathrm{X}=$ Non Standard
$Y=(1) 42$ circuit load center (Min $30^{\prime \prime}$ Tall dead front
$1=$ (1) 8 circuit loadcenter metered, (1) 8 circuit loadcenter unmetered
$2=(2) 8$ circuit loadcenters
3 = (1) 12 circuit loadcenters
4 = (1) 12 circuit loadcenter and (1) 8 circuit loadcenter
$5=(1) 16$ circuit loadcenter
$6=$ Lug to Lug Main \& Branch Breakers only
$7=$ (1) 8 circuit loadcenter, (1) 16 circuit loadcenter
$8=$ Fusible switch (Pullout)
$9=(1) 24$ circuit loadcenter
$0=(2) 16$ circuit loadcenters
 $22=22$ SCCR $\quad 42=42$ SCCR $\quad 100=100$ SCCR $25=25$ SCCR $50=50$ SCCR (Short Circuit Current Rating)

6. Enclosure Size

CP3A Slim Line
$\mathrm{A}=12^{\prime \prime} \mathrm{W} \times 8.25^{\prime \prime} \mathrm{D} \times 63^{\prime \prime} \mathrm{H}$ (Single)
$B=20^{\prime} \mathrm{W} \times 10.25^{\prime \prime} \mathrm{D} \times 63^{\prime \prime} \mathrm{H}$ (Single)
$\mathrm{C}=20^{\prime \prime} \mathrm{W} \times 10.25^{\prime \prime} \mathrm{D} \times 52^{\prime \prime} \mathrm{H}$ (Single)
$\mathrm{I}=12^{\prime \prime} \mathrm{W} \times 8.25^{\prime \prime} \mathrm{D} \times 50^{\prime \prime} \mathrm{H}$ (Single)
$\mathrm{J}=20^{\prime \prime} \mathrm{W} \times 10.25^{\prime \prime} \mathrm{D} \times 50^{\prime \prime} \mathrm{H}$ (Single)
$\mathrm{K}=12^{\prime \prime} \mathrm{W} \times 8.25^{\prime \prime} \mathrm{D} \times 63^{\prime \prime} \mathrm{H}$ (Single) (Exposed Meter)
L=20'W $\times 10.25^{\prime \prime} \mathrm{D} \times 63^{\prime \prime} \mathrm{H}$ (Single) (Exposed Meter)
$\mathrm{M}=12^{\prime \prime} \mathrm{W} \times 8.25^{\prime \prime} \mathrm{D} \times 50^{\prime \prime} \mathrm{H}$ (Single) (Exposed Meter)
$\mathrm{N}=20^{\prime} \mathrm{W} \times 10.25^{\prime \prime} \mathrm{D} \times 50^{\prime \prime} \mathrm{H}$ (Single) (Exposed Meter)
$\mathrm{O}=12^{\prime \prime} \mathrm{W} \times 8.25^{\prime \prime} \mathrm{D} \times 43^{\prime \prime} \mathrm{H}$ (Un Metered)
$\mathrm{P}=20^{\prime \prime} \mathrm{W} \times 10.25^{\prime \prime} \mathrm{D} \times 43^{\prime \prime} \mathrm{H}$ (Un Metered)

CP2B Surface Mount

$\mathrm{O}=35^{\prime \prime} \mathrm{W} \times 8^{\prime \prime} \mathrm{D} \times 48^{\prime \prime} \mathrm{H}$
$\mathrm{N}=14.5^{\prime \prime} \mathrm{W} \times 5$ " $\mathrm{D} \times 39^{\prime \prime} \mathrm{H}$

CP3B - Standard

A = CP3B, $16^{\prime \prime} \mathrm{W} \times 17^{\prime \prime} \mathrm{D} \times 48^{\prime \prime} \mathrm{H}$ (Single)
B = CP3B, 24 "W $\times 17^{\prime \prime} \mathrm{D} \times 48^{\prime \prime} \mathrm{H}$ (Double)
$C=$ CP3B, $30^{\prime \prime} W \times 24^{\prime \prime} D \times 48^{\prime \prime} H$ (Moved to CP3G Series 09/10/21)
$D=C P 3 B, 44^{\prime \prime} \mathrm{W} \times 24^{\prime \prime} \mathrm{D} \times 60^{\prime \prime} \mathrm{H}$
$\mathrm{E}=\mathrm{CP} 3 \mathrm{~B}, 16^{\prime \mathrm{W}} \mathrm{W} \times 17^{\prime \prime} \mathrm{D} \times 41^{\prime \prime} \mathrm{H}$ (Unmetered, Low profile)
$\mathrm{K}=\mathrm{CP} 3 \mathrm{~B}, 32^{\prime \prime} \mathrm{W} \times 20^{\prime \prime} \mathrm{D} \times 60^{\prime \prime} \mathrm{H}$
$L=$ CP3B, $36^{\prime \prime} W \times 20^{\prime \prime} D \times 60^{\prime \prime} H$ (Moved to CP3G Series 09/10/21)
$\mathrm{M}=\mathrm{CP} 3 \mathrm{~B}, 24 \mathrm{~W}$ " $\times 17$ "D $\times 41^{\prime \prime} \mathrm{H}$ (Unmetered, Low Profile)
$\mathrm{P}=\mathrm{CP} 3 \mathrm{~B}, 16^{\prime \prime} \mathrm{W} \times 17^{\prime \prime} \mathrm{DX} 48^{\prime \prime} \mathrm{H}$ (Exposed Meter)
Q = CP3B, $32^{\prime \prime} \mathrm{W} \times 20^{\prime \prime} \mathrm{D} \times 43.5^{\prime \prime} \mathrm{H}$ (Unmetered)
$\mathrm{R}=\mathrm{CP} 3 \mathrm{~B}, 24^{\prime \prime} \mathrm{W} \times 17^{\prime \prime} \mathrm{D} \times 48^{\prime \prime} \mathrm{H}$ (Exposed Meter)
$\mathrm{S}=\mathrm{CP} 3 \mathrm{~B}, 32^{\prime \prime} \mathrm{W} \times 20^{\prime \prime} \mathrm{D} \times 60^{\prime \prime} \mathrm{H}$ (Exposed Meter)
K = CP3B , $24^{\prime \prime} W \times 24^{\prime \prime} D \times 64^{\prime \prime} H$ (Ahoved to CP3FSeries 02/08/21) $Z=$ CP3B, $32^{\prime \prime} W \times 24^{\prime \prime} D \times 64^{\prime \prime} H$ (Moved to CP3FSeries 02/08/21) $T=C P 3 B 42^{\prime \prime} W \times 27^{\prime \prime} D \times 64^{\prime \prime} T$ (Moved to CP3FSeries $02 / 08 / 21$)
$W=$ CP3B 46" $W \times 27^{\prime \prime} D \times 64^{\prime \prime}$ (AMoved to CP3FSeries 02/08/21) WTR $=$ CP3B $46^{\prime \prime} W \times 27^{\prime \prime} D \times 64^{\prime \prime T}$ (Moved to CP3F Series 02/08/21) $W 1=$ CP3B $-46^{\prime \prime} W \times 39^{\prime \prime} D \times 64^{\prime \prime} T$ (Moved to CP3F Series $02 / 08 / 21$) W1TR-CP3B - $46^{\prime \prime} W \times 39^{\prime \prime} D \times 64^{\prime \prime} T$ (Moved to CP3FSeries 02/08/21) $W / 2=$ CP3B $78^{\prime \prime} w \times 39^{\prime \prime} D \times 64^{\prime \prime} T$ (AMoved to CP3F Series 02/08/21) W2TR $=$ CP3B $78^{\prime \prime} W \times 39^{\prime \prime} D \times 64^{\prime \prime}$ (Moved to CP3F Series $02 / 08 / 21$)

CP3C Series

A = CP3C, $20^{\prime \prime} \mathrm{W} \times 14^{\prime \prime} \mathrm{D} \times 60^{\prime \prime} \mathrm{T}$ (Metered) B = CP3C, $27^{\prime \prime} \mathrm{W} \times 14^{\prime \prime} \mathrm{D} \times 60^{\prime \prime} \mathrm{T}$ (Metered) C = CP3C, 34 "W x 14"D x 60"T (Metered) D = CP3C, $20^{\prime \prime} \mathrm{W} \times 14^{\prime \prime} \mathrm{D} \times 60$ "T (Unmetered) E = CP3C, 27"W $\times 14$ "D $\times 60$ " 7 (Unmetered)
$\mathrm{F}=\mathrm{CP} 3 \mathrm{C}, 34^{\prime \prime} \mathrm{W} \times 14^{\prime \prime} \mathrm{D} \times 60^{\prime \prime} \mathrm{T}$ (Unmetered)
H = CP3C, $58^{\prime \prime} \mathrm{W} \times 39^{\prime \prime} \mathrm{D} \times 67.5^{\prime \prime} \mathrm{T}$ (Dual Metered)

CP3F Series

A = CP3F, 46"W $\times 27^{\prime \prime} \mathrm{D} \times 64$ "T (CT Metered Exposed)
B = CP3F, $46^{\prime \prime} \mathrm{W} \times 39^{\prime \prime} \mathrm{D} \times 64^{\prime \prime} \mathrm{T}$ (CT Metered Exposed W/Transformer)
C = CP3F, 78"W x 39"D x 64"T (CT Dual Metered Exposed)
F = CP3F, $46^{\prime \prime} \mathrm{W} \times 27$ "D $\times 64$ " T (CT Metered Hooded)
G = CP3F, $46^{\prime \prime}$ W x 39"D x 64"T (CT Metered Hooded W/Transformer)
$\mathrm{H}=\mathrm{CP} 3 \mathrm{~F}, 78^{\prime \prime} \mathrm{W} \times 39^{\prime \prime} \mathrm{D} \times 64$ " T (CT Dual Metered Hooded)
L = CP3F, $46^{\prime \prime}$ W x 27 "D x 64 " (CT Metered External/Unmetered)
$M=C P 3 F, 46^{\prime \prime} \mathrm{W} \times 39$ " $\mathrm{D} \times 64$ " T (CT Metered External/Unmetered W/Transformer)
O = CP3F, 78"W x 39"D x 64"T (CT Dual External/Unmetered)
$\mathrm{T}=$ CP3B 42" $\mathrm{W} \times 27^{\prime \prime} \mathrm{D} \times 64^{\prime \prime} \mathrm{T}$ (CT Metered)
X = CP3B, $24^{\prime \prime} \mathrm{W} \times 24^{\prime \prime} \mathrm{D} \times 64^{\prime \prime} \mathrm{H}$ (CT Metered)
Z = CP3B, $32^{\prime \prime} \mathrm{W} \times 24^{\prime \prime} \mathrm{D} \times 64^{\prime \prime} \mathrm{H}$ (CT Metered)

CP3G Series

A = CP3G, $36^{\prime \prime} \mathrm{W} \times 20^{\prime \prime} \mathrm{D} \times 60^{\prime \prime} \mathrm{T}$ (Hooded Front Battery)
C = CP3G, 30"W $\times 24^{\prime \prime} \mathrm{D} \times 48^{\prime \prime} \mathrm{T}$ (Hooded Battery)
L = CP3G, 36 "W x 20 " $\mathrm{D} \times 60$ " T (Hooded Side Battery)

CP3H Series

A = CP3H, $54^{\prime \prime} \mathrm{W} \times 26^{\prime \prime} \mathrm{D} \times 78^{\prime \prime} \mathrm{T}(800 \mathrm{~A}-1600 \mathrm{~A})$ - discontinued
$\mathrm{C}=\mathrm{CP} 3 \mathrm{H}, 46^{\prime \prime} \mathrm{W} \times 39$ " $\mathrm{D} \times 66^{\prime \prime} \mathrm{T}$ (1200A max) surface mounted instrument rated meter
$B=C P 3 H, 98^{\prime \prime} W \times 39 \prime D \times 78^{\prime \prime} T$ (2400A max) surface mounted instrument rated meter

